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INTRODUCTION 
 
Engineering students have used computers for many years in 
order to assist them in performing complicated analysis, design 
and drafting tasks. Unfortunately, the use of computers has also 
been greatly limited to routine tasks. The author believes that 
the emphasis must be shifted to enabling students to better 
understand the engineering problem for which the computer is 
being used. The utilisation of the power of computers to 
promote a better understanding of structural analysis and 
design should be essential in teaching structural engineering 
students. 
 
MathCAD is an efficient learning environment for technical 
topics such as reinforced concrete design [1]. Its computational 
and presentation capabilities not only lend themselves to the 
solution of mathematically-based problems, but also to the 
effective communication of both the problem and solution. 
MathCAD enables information to be clearly presented, 
allowing for user interaction in a logical and uncomplicated 
manner. It contains powerful presentation capabilities, which 
include the use of charts, graphic objects and animation effects. 
MathCAD can also easily import objects from other application 
programs, such as images and digital photographs. These 
capabilities offer significant learning enhancements to students 
of technical subjects. 
 
MathCAD makes possible new learning strategies for students 
and teachers. What-if discussions, trend analyses, trial and error 
analyses, and optimisation are all valuable learning activities 
that take more time than the traditional technical problem-
solving approach permits. Taking advantage of the 
computational power and speed of MathCAD, instructors and 
students can quickly cycle through problem scenarios, 
observing trends in the analysis and design behaviours of  
two-way ribbed slabs. More importantly, MathCAD enables 
students/designers to carry out parametric studies to explore 

possible design solutions and gain a better understanding of the 
process through the interactive presentation of information. 
 
MathCAD greatly enhances a better understanding of a 
problem, its constraints and limitations. By using the MathCAD 
program, the student/engineer will have a better understanding 
of various aspects of the problem. Such aspects have not been 
readily available in previously developed powerful computer 
packages that assist students/designers in their structural 
analysis and design. 
 
The main objective of this article is to demonstrate that the use 
of MathCAD can promote a better understanding of the 
analysis and design of two-way ribbed slabs. A case study is 
utilised in order to demonstrate the application of the 
MathCAD program and show its impact on teaching the 
analysis and design of two-way ribbed slabs. 
 
OVERVIEW OF REINFORCED CONCRETE DESIGN 
PHILOSOPHIES 
 
A large number of structures are built of reinforced concrete: 
bridges, viaducts, buildings, etc. Reinforced concrete is a 
logical union of two materials: plain concrete, which possess 
high compressive strength but little tensile strength, and steel 
bars embedded in the concrete, which can provide the needed 
strength in tension. 
 
Two philosophies of design have been prevalent. The working 
stress method, which focuses on conditions at the service load 
(ie when the structure is being used), was the principal method 
used from the early 1900s until the 1960s. Today, the strength 
design method is used, which focuses on conditions at loads 
greater than service loads when failure may be imminent. 
 
In the strength design method, the service loads are increased 
sufficiently by factors in order to obtain the load at which 
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failure is considered to be imminent. This load is called the 
factored load. The structure or structural element is then 
proportioned so that the strength is reached when the factored 
load is acting. The computation of this strength takes into 
account the non-linear stress-strain behaviour of concrete. The 
strength design method may be expressed by the following 
equation: 
 

Strength provided  ≥  strength to carry factored loads      (1) 
 
where the strength provided (such as moment strength) is 
computed in accordance with the rules and assumptions of the 
behaviour prescribed by a building code, and the strength 
required is that obtained by performing a structural analysis 
using factored loads. 
 
The factored loads (including moments, shears, axial forces, 
etc) are obtained by multiplying the service loads by load 
factors so as to cover possible overloads and variations in 
design assumptions. The design strength of a section by 
multiplying the nominal strength (based on static equilibrium 
and compatibility of stress and strain) by a strength reduction 
factor φ to account for adverse variations in material strengths, 
workmanship, dimensions, control and the degree of 
supervision, even though they are within accepted tolerances. 
 
OVERVIEW OF TWO-WAY RIBBED SLAB ANALYSIS 
AND DESIGN 
 
Two-way ribbed slabs consist of beams spaced at regular 
intervals in perpendicular directions, which are monolithic with 
a slab. They are generally used for architectural reasons for 
large rooms like auditoriums, vestibules, theatre halls and shop 
showrooms where column free space is often the main 
requirement. The rectangular or square voids formed in the 
ceiling can be advantageously utilised for concealed 
architectural lighting. The sizes of the ribs running in 
perpendicular directions are generally kept the same. Instead of 
rectangular beam grids, diagonal grids can also be used with 
the ribs inclined at 45° to the sides. 
 
A two-way ribbed slab with ribs at close intervals in two 
mutually perpendicular directions can be considered as an 
orthotropic plate that is freely supported on four sides. 
Timenshenko’s analysis may be used to evaluate the moments 
and shears in the grid depending upon the deflection surface. 
 
Rankine-Grashoff Approximate Analysis Method 
 
The Rankine-Grashoff theory, which equates the deflections at 
the rib junctions, is an approximate analysis method commonly 
used for two-way ribbed slabs. Consider the ribbed-slab system 
shown in Figure 1 in which the rib spacings are a1 and b1 in the 
x and y directions, respectively. The deflections of the central 
ribs at the junction O must be the same. By equating the 
deflections, we have: 
 

4 4
1 25q a 5q b = 

384EI 384EI
δ =          (2) 

 
Where q = the total load per unit area, q1 and q2 = the loads 
shared in the x and y directions, respectively, a = the shorter 
grid dimension, and b = the longer grid dimension. Solving  
Eq. 1, we have: 
 

 4 4
1 2q a  = q b            (3) 

 
 

Figure 1: The deflection characteristics of grid floors. 
 
and: 
 

1 2q = q  + q    (4) 
 
Solving Eqs 2 and 3, we have: 
 

4

1 4 4

bq = q ( )
a  + b

         (5) 

4

2 4 4

aq = q ( )
a  + b

        (6) 

 
The bending moments for the central ribs are given by: 
 

2
1 1

AB
q  b  aM =  ( )

8
      (7) 

2
2 1

BD
q  a  bM =  ( )

8
      (8) 

 
The bending moments in the other ribs can also be determined 
in direct proportion to their distances from the centre. The ribs 
are designed as flanged sections to resist the moments and 
shears.  
 
However, it should be noted that the approximate methods do 
not yield the twisting moments in the beams and do not 
consider the dimensions (stiffness) of the ribs. 
 
Plate Theory Analysis Method 
 
The vertical deflection δ at any point of the grid shown in 
Figure 1 is expressed as follows: 
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where q = the total uniformly distributed load per unit area;  
ax and by = the plate length in x and y directions, respectively; 
Dx and Dy = the flexural rigidity per unit length of plate along 
the x and y directions, respectively, Cx and Cy = the torsional 
rigidity per unit length of the plate along the x and y directions. 
 
If a1 and b1 are the spacings of the ribs in the x and y 
directions, respectively, then their relations are as follows: 
 

1 1
x x

1 1

2 2
y y

1 1

E I CD =                                      C
b b

E  I CD                                    C
a a

=

= =
  (10) 

 
where EI1, EI2, C1 and C2 = the flexural and torsional rigidities 
of the effective section in the x and y directions, respectively. 
 
The moments and shears are computed using the following 
expressions: 
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The maximum bending moments (Mx and My) develop at the 
centre of the span while the maximum torsional moments (Mxy 
and Myx) are generated at the corners of the slab. The 
maximum shear forces (Qx and Qy) develop at the mid-points 
of the longer side supports. 
 
Further details on the design of two-way ribbed slabs can be 
found elsewhere [2-8]. 
 
USING THE MATHCAD PROGRAM FOR RIBBED SLAB 
ANALYSIS AND DESIGN 
 
The MathCAD program, which has been written for the 
analysis and design of two-way ribbed slabs, consists of the 
following five computational steps. 
 
Step 1 
 
The first step, which is, which is summarised in Figure 2, 
consists of entering the input data for the MathCAD program. 
 
Step 2 
 
The second step, which is summarised in Figure 3, consists of 
the following computational tasks: 
 
• Determine the position of the neutral axis of the rib cross-

section; 

Design Data:

b3 2000≡ mm Rib Spacing  

bw 200≡ mm Rib Width  

h 300≡ mm Rib Depth  

h1 100≡ mm Concrete Slab Thickness 

b2 200≡ mm Rib Width  

d1 70≡ mm Concrete Cover  (Tension Side)

d' 70.0≡ mm Concrete Cover  (Compression Side)

As 1964≡ mm2 Tensile Steel Area

A's 982≡ mm2 Compressive  Steel Area

Mu 100≡ kN m⋅ Ultimate Bending Moment 

STEP 1: READ INPUT DATA

b 16≡ m Slab Long Dimension  

a 12≡ m Slab Short Dimension  

b1 2≡ m Rib Spacing in y-direction

a1 2≡ m Rib Spacing in x-direction

q 6.55 1.5⋅≡
kN

m2
Total Load per Unit Area

f'c 20≡ MPa Concrete Compressive Strength

fy 415≡ MPa Steel Yield Strength

E 2 105⋅≡ MPa Steel Elastic Modulus

φs 0.85≡ Shear Strength Reduction Factor 

μ 0.15≡ Poisson Ratio

θ 2≡ Creep Coefficient  

 
 

Figure 2: Step 1 of the MathCAD program. 
 
• Compute the moment of inertia of the rib cross-section 

about the major axis (X-axis); 
• Compute the moment of inertia of the rib cross-section 

about the minor axis (Y-axis). 
 
Step 3 
 
The third step, which is summarised in Figure 4, consists of the 
following computational tasks: 
 
• Compute the deflection at the centre of the slab; 
• Compute the long-term deflection of the slab; 
• Compute the maximum permissible long-term deflection 

of the slab. 
 
Step 4 
 
The fourth step, which is summarised in Figure 5, consists of 
the following tasks: 
 
• Compute the bending moments and shear forces using the 

approximate method; 
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STEP 2: COMPUTE SECTION PROPERTIES  
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Figure 3: Step 2 of the MathCAD program. 

STEP 3: COMPUTE DEFLECTIONS
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Figure 4: Step 3 of the MathCAD program. 
 
• Compute the bending moments, twisting moments, and 

shear forces using the plate theory at every point (xi,yi) of 
the slab; 

• Determine the maximum design moments about the major 
and minor axes; 

• Determine the maximum design shear forces in the 
horizontal and vertical directions. 

 
Step 5 
 
The fifth step is concerned with the design based on the ACI 
code of the interior ribs as T-beam sections and the edge ribs as 
L-beam sections  
 
TRADITIONAL VERSUS MATHCAD ENHANCED 
TEACHING 
 
Traditional teaching methods usually involve the time-
consuming task of the instructor writing detailed problem 
solutions on the board while students hurriedly copy the 
solutions into their notebooks. The learning process in the 
classroom is often suspended while the teacher and students 
occupy themselves with transcribing information. This 
traditional classroom activity can discourage critical thinking, 
and deprive both students and teachers of engaging exchanges 
with each other about the subject. 
 
A MathCAD-enhanced teaching method can be successfully 
integrated into a structural design course. The program is 
projected directly from the instructor’s computer onto a large 
screen in an appropriately equipped classroom. In the program, 
different formatting, including various fonts, colours, patterns 
and borders, are used. The readability of the text exceeds what 
instructors can produce by hand-on the classroom board. The 
equations look the same as they are written on a blackboard or 
in a reference book. In order to free students’ attention from 
transcription, students are given a hard copy for taking 
additional notes. 
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STEP 4: COMPUTE DESIGN MOMENT AND SHEAR

 
 

Figure 5: Step 4 of the MathCAD program. 
 
An electronic copy of the MathCAD program is also made 
available for students to review and practice later. The sketches 
are annotated with dimensions and notes. By using different 
drawing entities and varying their colour, pattern and line 
weight attributes, highly readable drawings are produced to 
illustrate the computations. Photographs can be easily digitised 
and imported into the program. Photographs and images are 
rich sources of visual information that can be shared among 

teachers and students. Images from the field or laboratory bring 
glimpses of the engineering world into the classroom where 
they can be shared by all. Existing photos and slides can be 
digitised using slide and film scanning processes. Digital 
photographs can be taken with digital cameras and downloaded 
directly to the computer without the use of film. Like 
spreadsheets, as soon as a change is made in the input data, the 
results are updated. Other types of charts, such as pie and 
histogram charts, can also be easily generated. 
 
There are several benefits of a MathCAD-enhanced approach to 
teaching. The time saved from tedious transcription frees 
students and the teacher for the discussion of concepts and the 
exploration of alternate problem scenarios, observation of 
trends and an expansion of the discussion to related topics. 
Outside the classroom, the instructor uses the same program to 
quickly generate test questions and solution keys. Trial and 
error solutions are cycled through rapidly. Students can review 
the classroom materials by changing input variables and 
observing results. Homework assignments can be developed to 
encourage students to use the program.  
 
Making the program available to students, encourages them to 
learn by exploring on their own. Visual changes of the 
interaction diagram give students a good control of the design. 
The time spent using the program to explore problem scenarios 
posed by the instructor can lead students to a better 
understanding of the concepts involved in the problems. 
Students can learn to write MathCAD programs using their 
own method of problem solving. 
 
Structural design problems usually have a number of solutions 
that lie within a design space. The traditional teaching of 
structural design usually focuses on a single solution through a 
number crunching exercise, following the rules set in a code of 
practice. Students are often unaware of a design space in 
traditional teaching. MathCAD allows students to undertake 
studies into numerous structural designs. More importantly, it 
provides a good graphical user interface, enabling students to 
see various design scenarios. MathCAD also provides good 
graphical output rather than pages and pages of script. 
 
MathCAD develops in students a better understanding of 
structural design by encouraging deep learning rather than 
surface learning. Marton and Saljo emphasise the importance of 
deep learning as an effective learning paradigm in engineering 
[9]. MathCAD also helps students to develop a better 
understanding of structural design by encouraging case studies-
based learning. Hills and Tedford emphasise the importance of 
case studies-based learning in engineering as the only way of 
effective learning and describes this as the new learning 
paradigm [10]. This type of learning is an effective and 
satisfying method of acquiring knowledge, as well as the 
intellectual and other skills associated with it. It invariably 
involves teamwork, project work, laboratory exercises and 
analytical reflection. Because many aspects of case studies are 
open ended, they invite discussion and judgemental conclusions. 
This engages the student’s interests and is highly motivating. 
 
CASE STUDY 
 
In the following case study, the effects of rib spacing and 
dimension on the behaviour of two-way ribbed slabs have been 
studied. It is well known that rib spacing and depth is the most 
important parameter that affects the behaviour of two-way 
ribbed slabs as a whole. In the study, the rib spacing has been 
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changed from 0.5 metre to 2.0 metres while the rib depths have 
been changed from 300 mm to 1,300 mm. Figure 3 shows the 
input data of the two-way ribbed slab selected for the study.  
 
The MathCAD program was utilised in order to determine the 
design bending moments and shear forces based on the 
approximate analysis method. Figure 6 presents the variation of 
the design bending moments MXmax and MYmax due to changes 
in the rib spacing.  
 
The MathCAD program was also used to determine the design 
bending moments and shear forces based on the plate theory 
analysis method. Figures 7 and 8 present the variation due to 
changes in rib spacing and depth of the design bending moments 
MXmax and MYmax, respectively. Tables 1 and 2 summarise the 
design bending moments MXmax and MYmax obtained using the 
approximate and plate theory analysis methods. 
 

Table 1: Design bending moments MX. 
 

Rib Spacing Analysis 
Method 

Rib Depth 
(mm) 2.00 m 1.00 m 0.75 m 0.50 m 

Approximate  269 134 125 84 
300 265 132 99 66 
350 279 139 104 70 
400 289 145 108 72 
450 299 149 112 75 
500 306 153 115 76 
550 312 156 117 78 
600 317 159 119 79 
700 325 162 122 81 
800 330 165 124 82 
900 334 167 125 83 

1,000 337 168 126 84 
1,100 339 170 127 85 
1,200 341 171 128 85 
1,300 343 171 128 86 

Plate theory 

1,400 344 172 129 86 
 

Table 2: Design bending moments MY. 
 

Rib Spacing Analysis 
Method 

Rib Depth 
(mm) 2.00 m 1.00 m 0.75 m 0.50 m 

Approximate  151 76 70 47 
300 149 74 56 37 
350 157 78 59 39 
400 163 81 61 41 
450 168 84 63 42 
500 172 86 65 43 
550 176 88 66 44 
600 178 89 67 45 
700 183 91 68 46 
800 186 93 70 46 
900 188 94 70 47 

1,000 189 95 71 47 
1,100 191 95 72 48 
1,200 192 96 72 48 
1,300 193 96 72 48 

Plate theory 

1,400 193 97 73 48 
 
Without the use of MathCAD program and its user interface, 
the potential to obtain this knowledge and full understanding of 
the behaviour of two-way ribbed slab is likely to have been 
masked by a number crunching exercise. From the results shown 
in Tables 1 and 2 and the bending moment plots in Figures 6, 7 

and 8, it is clear that the approximate method analysis results are 
only valid when the rib has the following features:  
 
• A depth of around 300-350 mm for rib spacing of 1 metre 

and 2 metres; 
• A depth of around 900-1,000 mm for rib spacing of 0.5 

metre and 0.75 metre. 
 
Unfortunately, the approximate analysis method does not allow 
for variation in rib depth (stiffness). Engineers generally use the 
approximate analysis for two-way ribbed slabs regardless of the 
rib depth. It is clear that if engineers use the approximate 
analysis method, without questioning their validity and 
limitations, then there is a danger of reaching a wrong decision 
that may result in an unsafe design. The interactive use of the 
MathCAD program, such as that used in this case study, provides 
the potential for undergraduates to explore the problem solution 
space and to gain a better understanding of structural behaviour. 
 
CONCLUSIONS 
 
MathCAD contains tools that can enhance and supplement 
traditional methods of teaching and learning. The versatility, 
accessibility and ease of use make MathCAD a platform for 
creating learning modules for technically-based courses. 
MathCAD contains the capabilities for traditional classroom 
computation, but with a greater degree of accuracy, reliability 
and presentation quality. In addition, its speed at repetitive 
tasks, as well as its programmability, make new learning 
strategies possible. MathCAD programs take time for an 
instructor to develop, but have many benefits in return. By 
freeing the instructor and students from tedious computation 
and transcription, MathCAD programs create opportunities for 
meaningful understanding of technical materials. A well-
designed MathCAD program can engage both students and 
teacher, inviting their exploration and discovery of the subject, 
thereby drawing them deeper into the secrets that it holds. 
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Figure 6: Slab design bending moments (approximate method). 
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Figure 7: Slab design bending moments Mx (plate theory method). 
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Figure 8: Slab design bending moment My (plate theory method). 




